Exercise 24

Prove that $\lim _{x \rightarrow 0} x^{2} \cos \left(1 / x^{2}\right)=0$.

Solution

Solution Using a Substitution

Rewrite the left side.

$$
\begin{aligned}
\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x^{2}}\right) & =\lim _{x \rightarrow 0} \frac{1}{\frac{1}{x^{2}}} \cos \left(\frac{1}{x^{2}}\right) \\
& =\lim _{x \rightarrow 0} \frac{\cos \left(\frac{1}{x^{2}}\right)}{\left(\frac{1}{x^{2}}\right)}
\end{aligned}
$$

Make the substitution, $u=1 / x^{2}$. Note that as $x \rightarrow 0, u \rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x^{2}}\right) & =\lim _{u \rightarrow \infty} \frac{\cos u}{u} \\
& =0
\end{aligned}
$$

This limit is zero because the denominator gets bigger and bigger as $u \rightarrow \infty$, whereas the numerator remains bounded between -1 and 1 .

Solution Using the Squeeze Theorem

Recognize that $\cos \left(1 / x^{2}\right)$ is bounded by -1 and +1 , so we can consider the inequality,

$$
-x^{2} \leq x^{2} \cos \left(\frac{1}{x^{2}}\right) \leq x^{2}
$$

Take the limit of all sides as $x \rightarrow 0$.

$$
\lim _{x \rightarrow 0}\left(-x^{2}\right) \leq \lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x^{2}}\right) \leq \lim _{x \rightarrow 0} x^{2}
$$

Evaluate the limits on the left and right sides.

$$
-(0)^{2} \leq \lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x^{2}}\right) \leq(0)^{2}
$$

This means

$$
0 \leq \lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x^{2}}\right) \leq 0
$$

Therefore, by the Squeeze Theorem,

$$
\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x^{2}}\right)=0
$$

